1.【综述】西安电子科技大学宁蓬勃教授、王忠良教授与NIH陈小元教授合作:工程巨噬细胞用于癌症免疫治疗和药物输送Xia, Y., et al. (2020)."Engineering Macrophages for Cancer Immunotherapy and Drug Delivery."Adv Mater: e2002054. IF=27.398
2.天津医科大学总医院张建宁教授、兰州大学李敏教授与美国Bloodworks Research Institute Jin-fei Dong教授、贝勒医学院Miguel A. Cruz合作:构象依赖的活化VWF的阻断改善了小鼠颅脑外伤
Xu, X., et al. (2020). "Conformation-DependentBlockage of Activated VWF Improved Outcomes of Traumatic Brain Injury inMice." Blood. IF=17.543
3.首都医科大学宣武医院神经疾病高创中心贾建平教授课题组:血液外泌体中的突触蛋白可在无症状阶段预测阿尔茨海默病的发生
Jia, L., et al. (2020). "Bloodneuro-exosomal synaptic proteins predict Alzheimer's disease at theasymptomatic stage." Alzheimers Dement. IF=17.127
前期报道:https://www.exosomemed.com/7534.html
4.【综述】山东大学第二医院王传新、王允山、杜鲁涛:外泌体参与胰腺癌的诊断和治疗
Ariston Gabriel, A. N., et al. (2020)."The involvement of exosomes in the diagnosis and treatment of pancreatic cancer." Mol Cancer 19(1): 132. IF=15.302
目前,胰腺癌是最致命的胃肠道疾病之一,而胰腺癌的生长是一个复杂的生物过程,它基于不同种类的基因。外泌体是含有miRNA、mRNA和蛋白质的细胞外囊泡,它们是细胞间通讯的最主要介体,并且它们调节、指导和再教育周围的微环境,并靶向特定器官。由于积累的证据证明外泌体参与胰腺癌的转移、细胞增殖、EMT、血管生成和TME,因此外泌体是尽早发现胰腺癌的重要潜在候选者。这篇综述旨在传达当前了解外泌体在胰腺癌的早期诊断和治疗中所使用的主要功能。
5.哈尔滨医科大学附属第二医院肝胆胰外科崔云甫课题组:新型环状RNAcirc-CCAC1促进胆管癌进展、诱导血管生成并破坏血管内皮屏障
Xu, Y., et al. (2020). "A novelcircular RNA, circ-CCAC1, contributes to CCA progression, induces angiogenesis, and disrupts vascular endothelial barriers." Hepatology. IF=14.679
前期报道:https://www.exosomemed.com/7503.html
6.解放军总医院肾内科陈香美教授、南开大学李宗金教授、杨志谋教授:包含精氨酸-甘氨酸-天冬氨酸(RGD)肽的超分子纳米纤维增强肾小管修复中细胞外囊泡的治疗功效
Zhang, C., et al. (2020). "Supramolecular Nanofibers Containing Arginine-Glycine-Aspartate (RGD) Peptides Boost Therapeutic Efficacy of Extracellular Vesicles in Kidney Repair." ACSNano. IF=14.588
10.第四军医大学口腔医院金岩教授、刘世宇副教授团队和西安交通大学陈鑫研究员团队合作:嵌合凋亡小体具有天然膜和模块化递送系统功能,可调节炎症
Dou, G., et al. (2020). "Chimericapoptotic bodies functionalized with natural membrane and modular delivery system for inflammation modulation." Sci Adv 6(30): eaba2987. IF=13.116
11.香港科技大学王吉光教授、首都医科大学江涛教授与西班牙国家癌症研究中心合作:MGMT基因重排导致神经胶质瘤的化疗耐药
Oldrini, B., et al. (2020). "MGM Tgenomic rearrangements contribute to chemotherapy resistance in gliomas."Nat Commun 11(1): 3883. IF=12.121
替莫唑胺(TMZ)是一种口服烷基化剂,用于治疗胶质母细胞瘤,目前正成为高危低度神经胶质瘤的患者的化疗选择。O-6-甲基鸟嘌呤-DNA甲基转移酶(MGMT)负责直接修复TMZ诱导的主要有毒DNA加合物O6-甲基鸟嘌呤损伤。MGMT启动子高甲基化目前是胶质母细胞瘤患者中唯一已知的TMZ反应生物标记。该研究显示,复发性神经胶质瘤的一个子集携带MGMT基因组重排,导致MGMT过表达,与其启动子甲基化的变化无关。通过利用CRISPR/Cas9技术,在神经胶质瘤细胞中产生了一些MGMT重排,并证明MGMT基因组重排在体外和体内均对TMZ产生了抗性。最后,可以在肿瘤来源的外泌体中检测到这种融合,并且可能在一部分接受TMZ治疗的患者中代表了肿瘤复发的早期检测标记。
12.中山大学药学院张元庆教授、中山大学第一附属医院李家平教授:用化合价控制的DNA纳米结构工程化的细胞外囊泡可递送CRISPR/Cas9系统进行基因治疗
Zhuang, J., et al. (2020)."Extracellular vesicles engineered with valency-controlled DNA nanostructures deliver CRISPR/Cas9 system for gene therapy." Nucleic Acids Res. IF=11.501
细胞外囊泡(EVs)具有将CRISPR-Cas9 RNA引导的内切核酸酶(RNP)转运至全身的巨大希望。然而,EVs的细胞选择性递送仍然是一个挑战。该研究设计了与DNA适体偶联的化合价控制的四面体DNA纳米结构(TDN),并通过胆固醇锚定将化合价控制的TDNs装载在EV表面上,以实现特定的细胞靶向。研究了不同比例的适体/胆固醇从1:3至3:1在TDN中对修饰EV的靶向功效。具有一个适体和三个胆固醇锚定物的TDN(TDN1)有效地促进了EV在培养的HepG2细胞和人类原发性肝癌衍生的类器官以及异种移植肿瘤模型中的肿瘤特异性蓄积。TDN1-EVs在细胞内递送RNP成功实现了其随后的基因组编辑,从而导致特定细胞中GFP或WNT10B的下调。该系统最终用于降低WNT10B的蛋白表达,从而在体内、离体和体内均表现出显著的肿瘤生长抑制作用,并且可以扩展到其他治疗靶标。该研究为在表面标记上适体的定向展示和基于EVs的Cas9递送提供了平台,这为将来的细胞选择性基因编辑提供了有意义的想法。
13.中国科学院上海应用物理研究所王丽华研究员、李宾研究员:无标签和三维可视化方法揭示了质膜衍生的细胞外囊泡的动力学特征
Wang, K., et al. (2020)."Label-Free and Three-Dimensional Visualization Reveals the Dynamics of Plasma Membrane-Derived Extracellular Vesicles."Nano Lett. IF=11.238
质膜来源的细胞外囊泡(PEV)是执行特殊细胞间通信的生物分子载体。然而,当前的方法阻碍了复杂PEV生物学的表征,这主要是由于缺乏特异性标记和分辨率不足。该研究采用了原子力显微镜和扫描离子电导显微镜,它们均具有三维纳米尺度的分辨率,可在单囊泡水平上无标记地观察PEV的形态、释放和摄取。除了经典的微泡,该报道还观察到肿瘤细胞中的簇状PEVs亚型。而且,两种PEV亚型的释放时间与大小呈正相关。通过三维纳米尺度成像,可视化了单个囊泡的多种形式的PEV-细胞相互作用行为,这在传统的PEV成像中受到了挑战。最后,开发了单细胞操纵策略来诱导微米级PEV的产生。总体而言,这些结果揭示了单囊泡水平上PEV的异质形态和动力学,为PEV生物学提供了新的认识。
14.【综述】长江大学信洪武、中山大学张擎、长江大学马兆武:树突状细胞生物学及其在肿瘤免疫治疗中的作用
Wang, Y., et al. (2020)."Dendritic cell biology and its role in tumor immunotherapy." J Hematol Oncol 13(1): 107. IF=11.059
树突状细胞(DC)作为重要的抗原呈递细胞,在肿瘤免疫治疗中起着至关重要的作用。考虑到DC生物学的最新进展,该文讨论了DC如何通过特异性吞噬作用和非特异性微胞吞作用通过模式识别受体识别病原性抗原,将抗原加工成具有适当大小和序列的小肽,以及将MHC肽呈递给CD4(+)和CD8(+)T细胞,以启动针对入侵微生物和异常宿主细胞的免疫反应。在抗肿瘤免疫反应中,发现DC衍生的外泌体参与抗原呈递。DC抗原呈递后,T细胞微绒毛动力学和TCR构象变化。最近报道了Caspase 11驱动的过度活跃的DC将效应子转化为记忆T细胞。据报道,DC与NK细胞发生串扰。此外,DC是在肿瘤微环境中进行免疫监视的最重要的前哨细胞。除DC生物学外,还在临床前研究和临床试验中回顾基于DC的肿瘤免疫疗法的最新进展。靶向肿瘤特异性抗原的个性化DC疫苗诱导的T细胞免疫已被证明是黑色素瘤患者肿瘤免疫疗法的一种有前途的形式。重要的是,已发现装载同种异体IgG和HLA的新抗原DC疫苗在小鼠中具有强大的抗肿瘤作用。对DC生物学及其在肿瘤免疫治疗中的作用的全面综述有助于将DC理解为T细胞的指导者以及具有巨大潜力的新型肿瘤免疫治疗细胞。
15.天津大学仰大勇教授:干细胞膜包裹纳米复合物的自组装,用于microRNA介导的心肌梗死修复
Yao, C., et al. (2020)."Self-assembly of stem cell membrane-camouflaged nanocomplex for microRNA-mediated repair of myocardial infarction injury." Biomaterials 257: 120256. IF=10.317
间充质干细胞来源的外泌体已显示出对心肌梗死(MI)的有希望的治疗作用。使用外泌体仍存在障碍,这主要是由于细胞培养的低产量以及复杂的纯化过程。该研究报告了干细胞膜伪装的外泌体模拟纳米复合物的自我组装,该复合物概括了外泌体功能,实现了有效的miRNA传递和miRNA介导的心肌修复。纳米复合物是通过间充质干细胞膜在miRNA负载的中孔二氧化硅纳米粒子表面上的自组装而构建的,从而实现了高miRNA的负载能力并保护miRNA免受体液降解。纳米复合物可以逃脱免疫系统的清除,并靶向缺血性受损的心肌细胞。触发miRNA释放并与靶mRNA结合,从而抑制凋亡相关蛋白的翻译,从而促进心肌细胞的增殖。在MI小鼠模型中,模拟外泌体的纳米复合物的给药有效地促进了存活心肌的保存和心脏功能的增强。
16.西安交通大学附属西安市中心医院神经外科微创及转化医学中心龙乾发博士课题组:MSC衍生的外泌体通过调控NRF2信号来抑制氧化应激诱导的皮肤损伤
Wang, T., et al. (2020)."MSC-derived exosomes protect against oxidative stress-induced skin injuryvia adaptive regulation of the NRF2 defense system." Biomaterials 257:120264. IF=10.317
前期报道:https://www.exosomemed.com/7562.html
17.沈阳药科大学孙进教授:一种类似外泌体的可编程生物激活紫杉醇前药纳米平台,可增强乳腺癌转移抑制作用
Wang, K., et al. (2020). "Anexosome-like programm able-bioactivating paclitaxel prodrug nanoplatform forenhanced breast cancer metastasis inhibition." Biomaterials 257: 120224. IF=10.317
转移与乳腺癌高死亡率密切相关。尽管基于纳米技术的抗转移治疗已迅速发展,但抗转移效率仍远远不能令人满意,这主要是由于血液中循环肿瘤细胞(CTC)的识别能力差。该研究开发了一种外泌体样的顺序生物激活前药纳米平台(EMPCs)来克服这一障碍。具体而言,将活性氧(ROS)响应的硫醚连接的紫杉醇-亚油酸共轭物(PTX-S-LA)和葫芦素B(CuB)共包裹到聚合物胶束中,并用外泌体膜进一步修饰纳米颗粒(EM)。通过癌细胞膜和同型EM之间的高亲和力相互作用,所得的EMPC可以在血液循环过程中特异性捕获和中和CTC。在细胞摄取后,EMPC首先释放CuB,通过下调FAK/MMP信号通路显著阻断肿瘤转移。此外,CuB明显提高了细胞内的氧化水平,从而诱导了ROS响应性PTX-S-LA的顺序生物激活。体外和体内结果表明,EMPCs不仅表现出放大的前药生物激活,延长的血液循环,对同型肿瘤细胞的选择性靶向以及增强的肿瘤渗透性,而且还通过CTC清除和FAK/MMP信号通路调节来抑制肿瘤转移。这项研究提出了基于机制的肿瘤转移抑制的综合方法,并显示了可编程生物激活前药纳米平台对癌症转移抑制的潜在潜力。
18.华南理工大学王均教授、袁友永教授:细胞间递送生物正交化学受体以增强肿瘤靶向和穿透力
Tu, Y., et al. (2020)."Intercellular delivery of bioorthogonal chemical receptors for enhanced tumor targeting and penetration." Biomaterials 259: 120298. IF=10.317
使用生物配体的靶向药物递送可以提高癌症治疗的准确性。然而,由于靶向受体在肿瘤细胞中的缺乏和异质分布,这种主动靶向策略在肿瘤靶向和穿透能力方面受到限制,从而损害了治疗结果。该研究开发了一种替代的主动靶向策略,可通过合成纳米颗粒介导的代谢肿瘤配体标记增强肿瘤的靶向性和穿透力,从而结合生物正交化学受体结合体内生物正交化学受体进行细胞间递送。简而言之,首先通过纳米级代谢前体(Az-NP)通过增强的渗透性和保留(EPR)效应以及肿瘤细胞的代谢工程,在血管周肿瘤细胞上标记出含人工叠氮化物的配体。通过血管周围肿瘤细胞分泌的细胞外囊泡(EV)的转运,含叠氮化物的配体可以自主地细胞间转运至相邻细胞,并进一步扩散到整个肿瘤组织中,并在不靠近血管的细胞上标记生物正交配体。然后,通过体内生物正交点击反应,静脉注射水溶性二苯并环辛炔修饰的二氢卟酚e6(DBCO-Ce6)与细胞表面的叠氮化物基团选择性,有效且不可逆地反应。通过这种策略,DBCO-Ce6的肿瘤积累和渗透增强,从而通过光动力疗法的激光照射提高了治疗效率。因此,通过EPR效应与生物正交点击化学相结合的纳米颗粒介导的代谢标记,结合人工叠氮化物的配体靶向策略可为广泛应用提供增强肿瘤靶向和渗透性的替代策略。
19.南通大学:外泌体触发的酶促DNA电机的工程设计,用于肿瘤衍生外泌体的高灵敏度荧光检测
Yu, Y., et al. (2020)."Engineering of exosome-triggered enzyme-powered DNA motors for highly sensitive fluorescence detection of tumor-derived exosomes." BiosensBioelectron 167: 112482. IF=10.257
包含多种源自亲代癌细胞的蛋白质的肿瘤衍生外泌体已成为诊断癌症的生物标记。该研究提出了一种基于三维DNA马达的外泌体测定平台,用于选择性和灵敏地检测外泌体。DNA马达使用了金纳米粒子(GNP)轨道,该轨道由荧光素标记的底物链和适体锁定的马达链组成。适配体识别外泌体上的目标蛋白可解锁电机链,并触发DNA电机过程。在限制性核酸内切酶的驱动下,马达链自主地沿着GNP轨道运动。每个运动步骤均切割一条底物链并还原一个荧光素分子。对于外泌体检测,所提出的方法显示了跨越5个数量级的宽动态范围,在PBS中的检测限低至8.2颗粒/μL。该方法在不同肿瘤来源的外泌体之间也表现出良好的选择性,并且在复杂的生物样品中表现良好。分析外泌体表面蛋白的能力有效地赋予了DNA马达巨大的潜力,可用于开发一种简单且具有成本效益的临床诊断设备。
20.上海大学生命科学学院赵婧课题组与复旦大学附属肿瘤医院李纲课题组:基于DNA扩增反应的金属有机框架材料鉴定乳腺癌PD-L1阳性外泌体
Cao, Y., et al. (2020)."Identification of programmed death ligand-1 positive exosomes in breast cancer based on DNA amplification-responsive metal-organic frameworks."Biosens Bioelectron 166: 112452. IF=10.257
前期报道:https://www.exosomemed.com/7498.html
21.中国科学院生物物理研究所范克龙研究员等:外泌体用于穿透性靶向肿瘤NIR-II热放射疗法
Zhu, D., et al. (2020). "Stellate Plasmonic Exosomes for Penetrative Targeting Tumor NIR-IIThermo-Radio therapy." ACS Appl Mater Interfaces 12(33): 36928-36937. IF=8.758
22.香港中文大学化学系:工程外泌体靶向软骨细胞递送MicroRNA用于无细胞的骨关节炎治疗
Liang, Y., et al. (2020)."Chondrocyte-Targeted MicroRNA Delivery by Engineered Exosomes toward a Cell-Free Osteoarthritis Therapy." ACS Appl Mater Interfaces 12(33):36938-36947. IF=8.758
23.【综述】武汉大学口腔医院李祖兵等:外泌体在颅面和牙科应用中的新兴作用
Xing, X., et al. (2020). "Emergingrole of exosomes in craniofacial and dental applications." Theranostics10(19): 8648-8664. IF=8.579
24.第四军医大学黄景辉教授等:机械刺激施旺细胞通过细胞外小泡介导的microRNA 23b-3p转移促进周围神经再生
Xia, B., et al. (2020). "Mechanical stimulation of Schwann cells promote peripheral nerve regeneration via extracellular vesicle-mediated transfer of microRNA 23b-3p." Theranostics10(20): 8974-8995. IF=8.579
25.南开大学刘定斌、高红梅和中南大学荣鹏飞课题组:一种纳米酶辅助技术用于分析外泌体蛋白质,可快速诊断癌症
Di, H., et al. (2020)."Nanozyme-assisted sensitive profiling of exosomal proteins for rapidcancer diagnosis." Theranostics 10(20): 9303-9314. IF=8.579
前期报道:https://www.exosomemed.com/7574.html
26.徐州医科大学附属医院肾内科孙东课题组:GDNF修饰的间充质干细胞衍生的外泌体改善了肾小管周围毛细血管丢失现象
Chen, L., et al. (2020). "Exosomes derived from GDNF-modified human adipose mesenchymal stem cells ameliorate peritubular capillary loss in tubulointerstitial fibrosis by activating theSIRT1/eNOS signaling pathway." Theranostics 10(20): 9425-9442. IF=8.579
前期报道:https://www.exosomemed.com/7599.html
27.【综述】青岛大学:靶向磷脂酰丝氨酸治疗癌症——前景与挑战
Chang, W., et al. (2020). "Targeting phosphatidylserine for Cancer therapy: prospects and challenges."Theranostics 10(20): 9214-9229. IF=8.579
28.深圳大学高等研究院江山教授等:Lewis肺癌细胞外泌体中的miR-21a通过靶向PDCD4增强髓样来源的抑制细胞的扩增来加速肿瘤生长
Zhang, X., et al. (2020). "miR-21ain exosomes from Lewis lung carcinoma cells accelerates tumor growth through targeting PDCD4 to enhance expansion of myeloid-derived suppressor cells."Oncogene. IF=7.971
29.上海交通大学仁济医院赵刚等:缺氧性胃癌外泌体通过miR-301a-3p/PHD3/HIF-1α正反馈回路促进进展和转移
Xia, X., et al. (2020). "Hypoxicgastric cancer-derived exosomes promote progression and metastasis viaMiR-301a-3p/PHD3/HIF-1α positive feedback loop." Oncogene. IF=7.971
30.浙江大学:外泌体参与——ApoC1通过激活STAT3促进透明细胞肾细胞癌的转移
Li, Y. L., et al. (2020). "ApoC1 promotes the metastasis of clear cell renal cell carcinoma via activation of STAT3."Oncogene. IF=7.971
31.南京医科大学陈峰等:CAR(CARSKNKDC)肽修饰的ReNcell衍生的细胞外囊泡作为靶向肺动脉高压治疗的新型治疗剂
Wang, J., et al. (2020). "CAR(CARSKNKDC) Peptide Modified ReNcell-Derived Extracellular Vesicles as a Novel Therapeutic Agent for Targeted Pulmonary Hypertension Therapy."Hypertension: Hypertensionaha12015554. IF=7.713
32.苏州大学周芳芳教授等:头颈癌中的外泌体——作用、机制和应用
Cao, J., et al. (2020). "Exosomesin head and neck cancer: Roles, mechanisms and applications." Cancer Lett494: 7-16. IF=7.36
33.复旦大学闵行医院:环状RNAcirc-CPA4/miRNA let-7/PD-L1轴调节非小细胞肺癌(NSCLC)中的细胞生长、干性、耐药性和免疫逃逸
Hong, W., et al. (2020). "CircularRNA circ-CPA4/ let-7 miRNA/PD-L1 axis regulates cell growth, stemness, drug resistance and immune evasion in non-small cell lung cancer (NSCLC)." JExp Clin Cancer Res 39(1): 149. IF=7.068
34.南京医科大学第一附属医院王水教授等:血浆中从5'端衍生的tRNA片段作为早期乳腺癌的新型诊断生物标志物
Wang, J., et al. (2020). "Plasma tRNA Fragments Derived from 5' Ends as Novel Diagnostic Biomarkers for Early-Stage Breast Cancer." Mol Ther Nucleic Acids 21: 954-964. IF=7.032
35.第二医科大学:SIRT1过表达的ADSC的外泌体通过改善EPC的血管生成功能来恢复心脏功能
Huang, H., et al. (2020)."Exosomes from SIRT1-Overexpressing ADSCs Restore Cardiac Function by Improving Angiogenic Function of EPCs." Mol Ther Nucleic Acids 21:737-750. IF=7.032
36.南京医科大学蔡卫华等:LCP1的外泌体转移通过激活JAK2/STAT3信号通路促进骨肉瘤细胞的肿瘤发生和转移
Ge, X., et al. (2020). "Exosomal Transfer of LCP1 Promotes Osteosarcoma Cell Tumorigenesis and Metastasis by Activating the JAK2/STAT3 Signaling Pathway." Mol Ther Nucleic Acids 21: 900-915. IF=7.032
37.西南医科大学:基于外泌体的仿生纳米颗粒靶向发炎的关节,以增强对类风湿关节炎的治疗
Yan, F., et al. (2020)."Exosome-based biomimetic nanoparticles targeted to inflamed joints forenhanced treatment of rheumatoid arthritis." J Nanobiotechnology 18(1):115. IF=6.518
38.吉林大学中日联谊医院:磁性靶向增强人间充质干细胞来源的氧化铁外泌体的皮肤伤口愈合作用
Li, X., et al. (2020). "Magnetictargeting enhances the cutaneous wound healing effects of human mesenchymalstem cell-derived iron oxide exosomes." J Nanobiotechnology 18(1): 113. IF=6.518
39.中山大学附属第三医院:间充质干细胞外泌体释放的MicroRNA-377-3p通过靶向RPTOR诱导自噬,改善了脂多糖诱导的急性肺损伤
Wei, X., et al. (2020)."MicroRNA-377-3p released by mesenchymal stem cell exosomes ameliorates lipopolysaccharide-induced acute lung injury by targeting RPTOR to induceautophagy."Cell Death Dis 11(8): 657. IF=6.304
40.南京医科大学第一附属医院:缺氧条件hMSC来源的外泌体的长非编码RNA UCA1——通过miR-873-5p/XIAP轴进行心脏保护的新型分子靶标
Sun, L., et al. (2020). "Long noncoding RNA UCA1 from hypoxia-conditioned hMSC-derived exosomes: a novelmolecular target for cardioprotection through miR-873-5p/XIAP axis." CellDeath Dis 11(8): 696. IF=6.304