以下是英文采访原文,供参考: 生物谷: 关于您Nature文章:脑微环境中存在如此促进肿瘤定植的因子,您认为会不会是一种普遍现象,是否可能存在很多这种类似的miR。肿瘤一旦突破血脑屏障就不再受抑制? 回答: Our studies showed that astrocytes-derived miR-19a inhibited PTEN expression in metastatic tumor cells, thereby priming brain metastasis outgrowth. This mechanism is shared by breast cancer and melanoma brain metastasis models. miR-19a is one of the microRNAs that down regulate PTEN in brain metastatic cells, but we expect that some other PTEN-targeting microRNAs derived from astrocytes might have a similar function as miR-19a. This mechanism of astrocytes-derived miRs controlling the gene expression of disseminate tumor cells might also be involved in PTEN loss in other neurologic disease. Once disseminate tumor cells pass through the blood-brain barrier, the brain microenvironment could elicit both inhibiting and promoting effects on tumor colonization and outgrowth. Brain metastasis can have a long dormancy before it relapses, implying that the dynamic crosstalk between the disseminate tumor cells and brain metastatic niches is required for successful tumor colonization and outgrowth. Once disseminate tumor cells succeed in negotiating with brain microenvironment, and reversely the brain microenvironment shows the welcome signal to tumor cells, metastatic tumors would outgrow to symptomatic diseases.
生物谷:您怎么看外泌体在肿瘤治疗方面的应用? 回答:Exosomes represent a type of bio-vehicles that could be considered as natural liposomes. They are membrane-permeable, well-tolerated and can cross the blood-brain barrier. Therefore, exosomes emerge as favorable candidate carriers for therapeutics of cancer and other diseases. The first appealing application of exosome is the delivery of drugs, microRNAs, siRNAs and other therapeutic compounds, because they are more stable in exosomes [1]. For example, exosomes could be used to deliver tumor suppressor microRNAs or siRNAs that knock down oncogenes to inhibit tumor growth. Exosomes could target specific cell types or tissues so exosome delivery may improve efficacy and reduce off-target effects. Synthetic target ligand expression on the surface of exosomes can further improve their cell or tissue targeting specificity. For example, exosomes were engineered to express Lamp2b with a tumor-targeting integrin to enhance tumor-specific uptake [2]. Secondly, exosomes can be applied for cancer vaccination. Exosome can deliver tumor-derived antigens to induce anti-tumor immune responses. Dendritic cell-derived exosomes can induce anti-tumor immunity and have been used in clinical trials [3-5]. Thirdly, considering cancer-cell derived exosome can modify pre-metastasis niches [6], depleting these exosomes from circulation system is a possible option for blocking cancer metastasis. Reducing exosomes in the circulation system can be achieved by inhibiting exosome assembly and release from tumor cells with inhibitors, or by eliminating exosomes from cancer patients' circulation via extracorporeal purification. In summary, we can be optimistic about using exosomes as a new venue for cancer therapy despite of the technical challenges. Many investigators have shown evidences supporting the application of exosome for cancer treatment in vitro and in vivo [7]. However, currently only a few clinical trials using exosomes in cancer therapy are implemented. Future studies should clarify the complex mechanism of exosomes for more efficacious clinical trials.
生物谷:分泌外泌体的主细胞和其他细胞都可以吞噬或者接受外泌体携载的活性分子如mRNA,miRNA等,主细胞与其他细胞对外泌体摄取或者结合哪个更有优势?可能机制是什么? 回答: Exosomes are secreted by nearly all mammalian cells in the body, and also many cells can uptake exosomes containing mRNA, miRNA, or others. Cancer cells, fibroblast cells, immune cells, astrocytes and other cells have all been reported to release or uptake exosomes [7-9]. Indeed, donor cells can re-uptake their secreted exosomes. For example exosomes produced by pancreatic tumor cell lines had an autocrine effect on themselves shown by in vitro experiments [10]. However, the more important role of exosome seems to be modulation of microenvironment by paracrine mechanisms. Those exosomes from host cells can serve as external stimuli for recipient cells and change recipient cell signaling as well as the microenvironment around host cells. It is conceivable that the ability of up-taking exosomes by host cells themselves or by recipient cells depends on cellular context, and physiological status. This ability could dynamically change under different conditions. It should be emphasized that a significant function of exosomes is mediating intercellular interactions: cancer cell-released exosomes can be taken up by stromal cells in the tumor microenvironment that can thus be converted to tumor-prone microenvironment; reciprocally stromal cells in the tumor microenvironment can release exosomes taken up by cancer cells and facilitate tumor growth. Due to the heterogeneous nature of cancer cells, exosomes secreted by some tumor cells could also mediate the exchange of gene information to their neighboring tumor cells to alter their biological phenotypes, such as inducing drug resistance[11-12]. It is intriguing how the recipient cells uptake exosomes and how recipient cells are chosen. Exosomes are cell specific; however the mechanism of how recipient cells be selected is not yet very clear. Several reports indicated that it might be determined by adhesion-associated molecules on the surface of exosome, such as tetrapanins, glycoproteins, integrins and SNAREs [13-14]. A recent amazing Nature paper from Dr. David Lyden's group [6] showed that exosomes released by breast cancer cells had distinct integrin expressions. Exosomes having α6β4 and α6β1 integrins can be up-taken by S100A4-positive fibroblasts and surfactant protein C (SPC)-positive epithelial cells in the lungs to facilitate lung metastasis; exosomes with αvβ5 integrins is selectively uptaken by kupffer cells in the liver to promote liver metastasis. Therefore, integrins play critical roles in governing exosome transfer and uptake.
生物谷:关于外泌体的应用开发方面,您认为外泌体在疾病的诊断和治疗方面哪个更有应用前景?各应用方向有哪些发展的瓶颈问题? 回答:Significant applications of exosome include using exosomes as biomarkers for disease diagnosis, prognosis and as therapeutics. Although exosome biomarkers for diagnosis or prognosis seem to be on the fast track for translational application, both cancer diagnosis and therapy based by exosomes have bright perspectives. Exosomes can be detected in the body fluid, such as blood, urine, saliva and cerebrospinal fluid. Therefore, it is an ideal non-invasive biomarker for tumor diagnosis. A great example is that exosomes from pancreatic cancers were found to be enriched with the cell surface proteoglycan, glypican-1 (GPC1) which can be used as a highly sensitive and specific biomarker of pancreatic cancer [15]. Although GPC1 as a biomarker of pancreatic cancer need to be validated in larger patient cohorts, this finding exemplifies the power of utilizing exosomes for cancer diagnose. The main challenges of using exosomes in cancer diagnosis are 1) sensitivity and specificity. Not every exosomal proteins are biomarkers as sensitive and specific as described for GPC1. Many biomarker candidates' sensitivity and specificity are no better than current cancer biomarkers and most of them have not shown a clear promise for clinical application. 2) The technical aspects for isolating and enriching exosomes from the blood or other bodily fluids need to be further improved. We have already discussed the role of exosome in cancer therapy when answering the previous question. The main challenges of using exosomes in cancer therapy include, but not limited to, 1) How to load exogenous miRNAs, siRNAs or drugs into exosomes and how to increase cell-specific transfer; 2) How to prevent inflammation and immune reactions when developing non-autologous exosomes or bioengineered exosomes; 3) How to increase the half-life of exosomes in the body and avoid rapid clearance by liver and kidney after injection; 4) When depleting exosomes in the blood of patients, how to prevent loss of normal physiological functions of non-tumor promoting exosomes. 5) The cost concern and technology challenges related to isolating large amounts of exosomes for the treatment of patients. Exosomes can partake in both pro- and anti-tumor functions. Therefore, we should thoroughly understand the complexity of exosome biology before widely implementing exosomes in clinical trials.
|